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Abstract
An algebraic method is devised to uniformly construct a series of exact solutions
for general integrable and nonintegrable nonlinear evolution equations.
Compared with most existing tanh methods, the Jacobi function expansion
method or other sophisticated methods, the proposed method not only gives new
and more general solutions, but also provides a guideline to classify the various
types of the solutions according to the values of some parameters. The solutions
obtained in this paper include (a) polynomial solutions, (b) exponential
solutions, (c) rational solutions, (d) triangular periodic wave solutions, (e)
hyperbolic and solitary wave solutions and (f) Jacobi and Weierstrass doubly
periodic wave solutions. The efficiency of the method can be demonstrated
on a large variety of nonlinear equations such as those considered in this
paper, new (2 + 1)-dimensional Calogero–KdV equation, (3 + 1)-dimensional
Jimbo–Miwa equation, symmetric regular long wave equation, Drinfel’d–
Sokolov–Wilson equation, (2 + 1)-dimensional generalized dispersive long
wave equation, double sine-Gordon equation, Calogero–Degasperis–Fokas
equation and coupled Schrödinger–Boussinesq equation. In addition, the links
among our proposed method, the tanh method, the extended method and the
Jacobi function expansion method are also clarified generally.

PACS numbers: 03.65.Fd, 02.30.Jr, 02.30.Hq

1. Introduction

The investigation of the exact solutions of nonlinear evolution equations plays an important role
in the study of nonlinear physical phenomena. For example, the wave phenomena observed in
fluid dynamics, plasma and elastic media are often modelled by the bell-shaped sech solutions
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and the kink-shaped tanh solutions. The exact solution, if available, of those nonlinear
equations facilitates the verification of numerical solvers and aids in the stability analysis of
solutions. In the past decades, there has been significant progression in the development of
these methods such as the inverse scattering method [1], Darboux transformation [2–7], Hirota
bilinear method [8, 9], Lie group method [10, 11], algebro-geometric method [12–15] and
tanh method [16–18]. Among those, the tanh method provides a straightforward and effective
algorithm to obtain such particular solutions for a large nonlinear equation. Based on the
fact that solitary wave solutions are essentially of localized nature, one can write the solitary
wave solutions of a nonlinear equation as the polynomials of hyperbolic functions and change
it into a nonlinear system of algebraic equations. In recent years, much research work has
been concentrated on the various extensions and applications of the tanh method [17–23].
The basic purpose of these papers is to simplify the routine calculation of the method and
to find more general exact solutions. Parkes and Duffy mentioned the difficulty of using the
tanh method by hand for anything but simple partial differential equations. Therefore, they
automated to some degree the tanh method using symbolic computation software Mathematica
[18]. We presented a generalized tanh method for obtaining multiple travelling wave solutions
[20, 21]. The key idea is to use the solution of a Riccati equation to replace the tanh function
in expression (1.3). Recently, a new algorithm based on Wu’s method and computer software
Maple was presented by Li and Yao to automate the tanh method [22, 23].

In this paper, we shall develop an algebraic method with computerized symbolic
computation, which greatly exceeds the applicability of the existing tanh, extended tanh
methods and Jacobi function expansion method in obtaining a series of exact solutions
of nonlinear equations. The obtained solutions may include (a) polynomial solutions,
(b) exponential solutions, (c) rational solutions, (d) triangular periodic wave solutions, (e)
hyperbolic and solitary wave solutions and (f) Jacobi and Weierstrass doubly periodic wave
solutions. We remark here that by applying spectral theory, Weierstrass and theta elliptic
functions can be used to find periodic solutions for some equations such as the KdV equation,
coupled nonlinear Schrödinger equation etc. But this method is usually applied in the
integrable nonlinear evolution equations admitting Lax pairs representation [12–15]. An
alternative method is to transform the equation under study to the Weierstrass equation, Jacobi
equation, or more generally, to Painlevé-type equations [24–26]. This procedure is in general
complicated or impossible, especially for complicated dissipative nonlinear equations and
nonlinear coupled systems. Very recently, a Jacobi function expansion method was applied
to construct periodic wave solutions for some nonlinear equations. The essential idea of this
method is similar to the tanh method by replacing the tanh function with some Jacobi elliptic
functions such as cn ξ , sn ξ and dn ξ [27, 28]. For example, Jacobi periodic solution in terms
of sn ξ may be obtained by applying sn-function expansion. To get Jacobi doubly periodic
wave solutions in terms of cn ξ and dn ξ , many similar repetitious calculations have to be
made, and these efforts will be in vain if an equation does not admit these types of solutions at
all. The feature of our method proposed here is that, without much extra effort, we circumvent
integration to directly get the above series explicit solutions (a)–(f) in a uniform way, which
readily covers all results of the tanh method, extended tanh method, Jacobi function expansion
method and some other sophisticated methods. Another merit of our method is that it is
independent of the integrability of nonlinear equations. Viewed as a special case of partial
differential equations, the method readily applies to nonlinear ordinary differential equations.

Our paper is organized as follows. In section 2, the detailed deviation of the proposed
method is given. The applications of the proposed method to nonlinear integrable and
nonintegrable evolution equations are illustrated in section 3. The conclusion is then given in
section 4.
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2. The proposed method

Let us first recall how the tanh method works. For a given partial differential equation in
u(x, t)

H(u, ut , ux, uxx, . . .) = 0 (2.1)

where for convenience we take u(x, t) = U(ξ) = U(x + ct), which is just the same as for
ordinary travelling frame u(x, t) = U(ξ) = U(x − ct) under transformation c → −c. Now,
in our travelling frame we may transform the partial differential equation (2.1) into an ordinary
differential equation

H(U ′, U ′′, . . .) = 0. (2.2)

The next crucial step is that the solution sought for is expressed as a polynomial in tanh
function, namely,

u(x, t) = U(ξ) =
n∑

i=0

ai tanhi ξ. (2.3)

Doing so, we may take advantage of the property that the derivative of tanh ξ is polynomial
in tanh ξ , i.e. (tanh ξ)′ = 1 − tanh2 ξ . The positive integer n is determined by balancing
the highest order linear term with the nonlinear terms. By substituting (2.3) into equation
(2.2) and setting all coefficients of powers of tanh ξ to zero, we obtain a system of algebraic
equations, from which the parameters ai and c are explicitly obtained.

Now we outline our method, whose key idea is to take advantage of a first-order ordinary
differential equation and use its solutions to replace the tanh function in the expression (2.3).
The main steps are given as follows.

Step 1. Reduce partial differential equation (2.1) to the ordinary differential equation (2.2) by
considering the wave transformation u(x, t) = U(ξ), ξ = x + ct .

Step 2. Expand the solution of equation (2.2) in the form

u(x, t) = U(ξ) =
n∑

i=0

aiϕ
i (2.4)

where the new variable ϕ = ϕ(ξ) is a solution of the following ordinary differential equation

ϕ′ = ε

√√√√ r∑
j=0

cjϕj (2.5)

and ε = ±1. Then the derivatives with respect to the variable ξ become the derivatives with
respect to the variable ϕ as

d

dξ
= ε

√√√√ r∑
j=0

cjϕj
d

dϕ
(2.6)

d2

dξ2
= 1

2

r∑
j=1

jcjϕ
j−1 d

dϕ
+

r∑
j=0

cjϕ
j d2

dϕ2
, · · · . (2.7)

Step 3. Determine the parameters n, r and c, ai, cj (i = 0, 1, . . . , n, j = 0, 1, . . . , r).
Substituting (2.4) into (2.2) and balancing the highest derivative term with the nonlinear terms
by making use of (2.6) and (2.7), we then obtain a relation for n and r, from which the
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different possible values of n and r can be obtained. These values lead to the different series
expansions of the exact solutions for equation (2.1). For example, in the case of the KdV
equation

ut + 6uux + uxxx = 0

we have

r = n + 2. (2.8)

If we take n = 1 and r = 3 in (2.8), we may use the following series expansion as a solution
of the KdV equation

u = a0 + a1ϕ ϕ′ = ε
√

c0 + c1ϕ + c2ϕ2 + c3ϕ3.

Similarly, if we take n = 2, r = 4 in (2.8), we have

u = a0 + a1ϕ + a2ϕ
2 ϕ′ = ε

√
c0 + c1ϕ + c2ϕ2 + c3ϕ3 + c4ϕ4.

Substituting the expansion (2.4) into equation (2.2) and putting the same powers of ϕi and

ϕi
√∑r

j=0 cjϕj together, we obtain a polynomial about ϕ. Because of the independence of

functions ϕi (i = 0, 1, . . .), we may set their coefficients to zero and get a system of algebraic
equations, from which the above parameters can be found explicitly.

Step 4. Solve for equation (2.5). Substituting the parameters cj (j = 0, 1, . . . , r) obtained
in step 3 into equation (2.5), we can then obtain all the possible solutions. We remark here
that the solutions of equation (2.1) depend on the explicit solvability of equation (2.5). The
solution of the system of algebraic equations will be getting tedious with the increase of the
values of n and r. In this case when r = 4, equation (2.5) gives a series of fundamental
solutions such as polynomial, exponential, solitary wave, rational, triangular periodic, Jacobi
and Weierstrass doubly periodic solutions. We consider only the case r = 4 in this paper and
have

ϕ′ = ε
√

c0 + c1ϕ + c2ϕ2 + c3ϕ3 + c4ϕ4. (2.9)

By considering the different values of c0, c1, c2, c3 and c4, we find that equation (2.9) admits
a series of fundamental solutions, which are classified as follows.

Case A. Equation (2.9) admits two kinds of polynomial solutions as follows:

ϕ = ε
√

c0ξ as c1 = c2 = c3 = c4 = 0 c0 > 0 (2.10)

and

ϕ = −c0

c1
+

1

4
c1ξ

2 as c2 = c3 = c4 = 0 c1 �= 0. (2.11)

Case B. Equation (2.9) possesses two kinds of exponential solutions, namely,

ϕ = − c1

2c2
+ exp(ε

√
c2ξ) as c3 = c4 = 0 c0 = c2

1

4c2
c2 > 0 (2.12)

and

ϕ = c3

2c4
exp

(
εc3

2
√−c4

ξ

)
as c0 = c1 = c2 = 0 c4 < 0. (2.13)

Case C. Equation (2.9) admits six kinds of triangular solutions as follows:

ϕ = − c1

2c2
+

εc1

2c2
sin(

√−c2ξ) as c0 = c3 = c4 = 0 c2 < 0 (2.14)
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ϕ = ε

√
−c0

c2
sin(

√−c2ξ) as c1 = c3 = c4 = 0 c0 > 0 c2 < 0 (2.15)

ϕ =
√

−c2

c4
sec(

√−c2ξ) as c0 = c1 = c3 = 0 c2 < 0 c4 > 0 (2.16)

ϕ = −c2

c3
sec2

(√−c2

2
ξ

)
as c0 = c1 = c4 = 0 c2 < 0 (2.17)

ϕ = ε

√
c2

2c4
tan

(√
c2

2
ξ

)
as c1 = c3 = 0 c0 = c2

2

4c4
c2 > 0 c4 > 0 (2.18)

and

ϕ = − c2sec2
(

1
2

√−c2ξ
)

2ε
√−c2c4 tan

(
1
2

√−c2ξ
)

+ c3
as c0 = c1 = 0 c2 < 0. (2.19)

In the case when c4 = 0, the solution (2.19) degenerates to the solution (2.17).

Case D. Equation (2.9) admits six kinds of hyperbolic solutions, namely,

ϕ = − c1

2c2
+

εc1

2c2
sinh(2

√
c2ξ) as c0 = c3 = c4 = 0 c2 > 0 (2.20)

ϕ = ε

√
c0

c2
sinh(

√
c2ξ) as c1 = c3 = c4 = 0 c0 > 0 c2 > 0 (2.21)

ϕ =
√

−c2

c4
sech(

√
c2ξ) as c0 = c1 = c3 = 0 c2 > 0 c4 < 0 (2.22)

ϕ = −c2

c3
sech2

(√
c2

2
ξ

)
as c0 = c1 = c4 = 0 c2 > 0 (2.23)

ϕ = ε

√
− c2

2c4
tanh

(√
−c2

2
ξ

)
as c1 = c3 = 0 c0 = c2

2

4c4
c2 < 0 c4 > 0 (2.24)

and

ϕ = c2sech2
(

1
2

√
c2ξ

)
2ε

√
c2c4 tanh

(
1
2

√
c2ξ

) − c3
as c0 = c1 = 0 c2 > 0. (2.25)

In the case when c4 = 0, the solution (2.25) degenerates to the solution (2.23). As
c3 = 2ε

√
c2c4, the solution (2.25) degenerates to the following solution:

u = 1

2
ε

√
c2

c4

[
1 + tanh

(
1

2

√
c2ξ

)]
which is the same kind of solution with (2.24).

Case E. Equation (2.9) admits two kinds of rational solutions, namely,

ϕ = − ε√
c4ξ

as c0 = c1 = c2 = c3 = 0 c4 > 0 (2.26)

and

ϕ = 4c3

c2
3ξ

2 − 4c4
as c0 = c1 = c2 = 0. (2.27)
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Case F. Equation (2.9) admits three Jacobi elliptic doubly periodic wave solutions as follows:

ϕ =
√

− c2m2

c4(2m2 − 1)
cn

(√
c2

2m2 − 1
ξ

)
c1 = c3 = 0

c0 = c2
2m

2(m2 − 1)

c4(2m2 − 1)2
c2 > 0 c4 < 0

(2.28)

ϕ =
√ −c2

c4(2 − m2)
dn

(√
c2

2 − m2
ξ

)
c1 = c3 = 0

c0 = c2
2(1 − m2)

c4(m2 − 2)2
c2 > 0 c4 < 0

(2.29)

and

ϕ = ε

√
− c2m2

c4(m2 + 1)
sn

(√
− c2

m2 + 1
ξ

)
as c1 = c3 = 0

c0 = c2
2m

2

c4(m2 + 1)2
c2 < 0 c4 > 0

(2.30)

where m is a modulus. The Jacobi elliptic functions are doubly periodical and possess
properties of triangular functions, namely,

sn2ξ + cn2ξ = 1 dn2ξ = 1 − m2sn2ξ

(sn ξ)′ = cn ξdn ξ (cn ξ)′ = −sn ξdn ξ (dn ξ)′ = −m2sn ξcn ξ.

When m → 1, the Jacobi functions degenerate to the hyperbolic functions, i.e.

sn ξ → tanh ξ cn ξ → sech ξ dn ξ → sech ξ.

When m → 0, the Jacobi functions degenerate to the triangular functions, i.e.

sn ξ → sin ξ cn ξ → cos ξ dn ξ → 1.

More detailed notation for the Weierstrass and Jacobi elliptic functions can be found in
[27, 28].

Let us simply show formulae (2.28)–(2.30). In the case when c3 = c1 = 0, by using the
transformations

c0 = c2
2m

2

c4(m2 + 1)2
ϕ̄ =

√
−c4(m2 + 1)

c2m2
ϕ ξ̄ =

√
− c2

m2 + 1
ξ

equation (2.9) is reduced to the equation

ϕ̄′ = ±
√

1 − (m2 + 1)ϕ̄2 + m2ϕ̄4

which has a Jacobi elliptic solution ϕ̄ = sn(ξ,m). Therefore, we can obtain the solution
(2.30). Again formulae (2.28) and (2.29) can be obtained in a similar way. As m → 1, the
Jacobi doubly periodic solutions (2.28) and (2.29) degenerate to the solitary wave solutions
(2.20), and (2.30) degenerates to the solitary wave solutions (2.24).

Case G. Equation (2.9) admits a Weierstrass elliptic doubly periodic-type solution

ϕ = ℘

(√
c3

2
ξ, g2, g3

)
as c2 = c4 = 0 c3 > 0 (2.31)
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where g2 = −4c1/c3, and g3 = −4c0/c3 are called invariants of the Weierstrass elliptic
function. In fact, when c2 = c4 = 0 in equation (2.9) by using transformations

ξ̄ =
√

c3

2
ξ c0 = −1

4
c3g3 c1 = −1

4
c3g2

equation (2.9) becomes

ϕ ′̄
ξ

= ±
√

−g3 − g2ϕ + 4ϕ3

which has a Weierstrass elliptic doubly periodic solution ϕ = ℘(ξ̄, g2, g3).

Remark 1. The other types of travelling wave solutions such as cosec ξ , cot ξ , cosech ξ and
coth ξ can also be obtained from equation (2.9). These solutions appear in pairs of the functions
sec ξ , tan ξ , sech ξ and tanh ξ , respectively. Since the solutions (2.16)–(2.19), (2.26) and
(2.27) make the solutions of an equation under investigation diverge,we omit them in this paper.

Remark 2. Let us consider three special cases of our proposed method. In the case
c1 = c3 = 0, c0 = 1, c2 = −2, c4 = 1, equation (2.9) has a solution tanh ξ and our method
reduces to the tanh method [16–18]. In the case when c1 = c3 = 0, c0 = c2

2/4, c4 = 1,
equation (2.9) degenerates to a Riccati equation. In this case our proposed method becomes
the extended tanh method [20, 21]. The cases (2.28)–(2.30) readily cover the results of
the Jacobi function expansion method [29, 30]. In conclusion, our proposed method is a
generalization of either the tanh method or the extended tanh method.

The proposed method not only gives a unified formulation to uniformly construct a series
of exact solutions, but also provides a guideline to classify the types of solutions according
to the given parameters. Furthermore, the proposed method is computerizable in solving
nonlinear equations by using symbolic software like Mathematica or Maple.

3. Application

In this section, we apply the method developed in section 2 to various nonlinear equations and
give their series of exact solutions.

3.1. Integrable and nonintegrable equations

Example 1. Recently by considering the extension of (1 + 1)-dimensional Calogero–KdV
equation [31, 32], Yu and Toda introduced a new (2 + 1)-dimensional Calogero–KdV equation

ut +
1

4
uxxy +

uy

4u2
+

1

8
ux∂

−1
x

(
1

u2

)
y

+
u2

xuy

2w2
− 1

8
ux∂

−1
x

(
u2

x

u2

)
y

−uxuxy

2u
− uxxuy

4u
= 0.

(3.1)

They further showed that equation (3.1) was integrable in the sense of the Painlevé property
[33]. Our proposed method in this paper will give a series of new explicit exact solutions to
equation (3.1) as follows.

By considering the wave transformations u = U(ξ), ξ = x + cy + dt, we change the
equation (3.1) to the form

8dU 2U ′ + 2cU 2U ′′′ + 3cU ′ + 3cU ′3 − 6cUU ′U ′′ = 0. (3.2)

According to the proposed method, we use the following series expansion as solutions of
equation (3.2):

U =
n∑

i=0

aiϕ
i(x, y, t) =

n∑
i=0

aiϕ
i(ξ)
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where ϕ(ξ) satisfies equation (2.5). Balancing the term U 2U ′′′ with term UU ′U ′′ in (3.2)
gives

3n − 3 + r = 3n − 1 − 2 + r

which implies that n and r are arbitrary. We take r = 4 and n = 2 and have

U = a0 + a1ϕ + a2ϕ
2 (3.3)

where ϕ satisfies (2.9).
Substituting (3.3) into (3.2) and using Mathematica gives the following system:

3εca1 + 8εda2
0a1 + 3ε3ca3

1c0 − 12ε3ca0a1a2c0 − 3ε3ca0a
2
1c1 + 6ε3ca2

0a2c1 + 2ε3ca2
0a1c2 = 0

8εda0a
2
1 + 3εca2 + 8εda2

0a2 + 3ε3ca2
1a2c0 − 12ε3ca0a

2
2c0 − 6ε3ca0a1a2c1 − ε3ca0a

2
1c2

+ 8ε3ca2
0a2c2 + 3ε3ca2

0a1c3 = 0

8εda3
1 + 48εda0a1a2 − 3ε3ca2

1a2c1 − 24ε3ca0a
2
2c1 − ε3ca3

1c2 + 3ε3ca0a
2
1c3

+ 30ε3ca2
0a2c3 + 12ε3ca2

0a1c4 = 0

8εda2
1a2 + 8εda0a

2
2 − 3ε3ca1a

2
2c1 − ε3ca2

1a2c2 − 4ε3ca0a
2
2c2 + 6εca0a1a2c3

+ 3ε3ca0a
2
1c4 + 12ε3ca2

0a2c4 = 0

40εda1a
2
2 − 6ε3ca3

2c1 − 14ε3ca1a
2
2c2 + 3ε3ca2

1a2c3 + 3ε3cc4 + 60ε3ca0a1a2c4 = 0

8εda3
2 − 4ε3cc2 − 3ε3ca1a

2
2c3 + 9ε3ca2

1a2c4 + 12ε3ca0a
2
2c4 = 0

−ε3ca3
2c3 + 2ε3ca1a

2
2c4 = 0.

Note that ε = ±1 and hence ε3 = ε. We may eliminate ε from the above system. From the
output of Mathematica, we find three kinds of solutions, namely,

c1 = c3 = a1 = 0 c4 = a2(cc2 − 2d)

3ca0
a2 = 3c + 8da2

0 + 8ca2
0c2

12ca0c0
(3.4)

with a0, c0, c �= 0, c2 and d being arbitrary constants,

c4 = a2 = 0 c3 = a1(cc2 − 8d)

3ca0
c1 = 3c + 8da2

0 + 3ca2
1c0 + 2ca2

0c2

3ca0a1
(3.5)

with a0, a1, c �= 0, c0, c2 and d being arbitrary constants and

c0 = c1 = 0 c2 = − a2
1

a2
0

(
a2

1 − 4a0a2
) c3 = − 2a1a2

a2
0

(
a2

1 − 4a0a2
)

c4 = − a2
2

a2
0

(
a2

1 − 4a0a2
) d = − c

(
a2

1 − 12a0a2
)

8a2
0

(
a2

1 − 4a0a2
)

(3.6)

with a0, a1, a2 and c being arbitrary constants.
Since c1 = c3 = 0 in (3.4), by using (2.22), (2.28), (2.29) and (3.4), we obtain two kinds

of solutions, namely, a line solitary wave solution

u1 = a0 − 3ca0c2

cc2 − 2d
sech2(

√
c2ξ) c2 > 0

and a Jacobi doubly periodic solution

u2 = a0 − 3m2ca0c2

(2m2 − 1)(cc2 − 2d)
cn2

(√
c2

2m2 − 1
ξ

)
where ξ = x + cy + dt . As m → 1, the Jacobi doubly periodic solution u2 degenerates to the
line solitary wave solution u1.
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From (2.21), (2.29) and (3.4), and using a simple transformation c2 → −2c2, we find that
the corresponding solutions are the same with u1 and u2, respectively.

Setting c4 = 0 in (3.5), then by (2.9) and (2.15), the obtained solutions are the same with
u1, u2 by using the transformations c2 → 4c2 and a1 → a2.

From (2.31) and (3.6), we get a Weierstrass periodic solution

u3 = a0 + a1℘

(√
−2a1d

3ca0
ξ, g2, g3

)

where ξ = x + cy + dt and

g2 = 3c + 3ca2
1c0 + 8da2

0

2a2
1d

g3 = 3ca0c0

2a1c
.

We take d = cc2/8, then (3.5) becomes

c3 = c4 = a2 = 0 c1 = 1 + a2
1c0 + a2

0c2

a0a1
. (3.7)

If we restrict c0 = c2
1/(4c2) in (3.7), by using (2.12) we obtain an exponential-type

solution as follows:

u4 = a0 − c1

2c2
+ a1 exp(±√

c2ξ)

where ξ = x + cy + cc2t/8 and 4c2
(
a0a1c1 − a2

0c2 − 1
) − a2

1c
2
1 = 0.

If we restrict c0 = 0 in (3.7), by using (2.20) and (2.21) we obtain a triangular-type
solution

u5 = a0 − 1 + a2
0c2

2a0a1c2
[1 ± sin(

√−c2ξ)] c2 < 0

and a hyperbolic-type solution

u6 = a0 − 1 + a2
0c2

2a0a1c2
[1 ± sinh(2

√
c2ξ)] c2 > 0

where ξ = x + cy + cc2t/8.
From (2.19) and (3.6), we find that the obtained solitary wave solution is the same kind

with u1. In addition, the solutions u4 and u6 are nonlocalized solutions. We remark here
that the solutions u1 and u2 can be obtained by applying the tanh method [16, 17] and Jacobi
function expansion method [29, 30], respectively. But the solutions u4, u5 and u6 cannot be
obtained by these methods.

Example 2. Consider the (3 + 1)-dimensional Jimbo–Miwa equation

uxxxy + 3(uuy)x + 3uxx + 3uxx∂
−1
x uy + 3uxuy + 2uyt − 3uxz = 0

which describes certain physically interesting (3 + 1)-dimensional waves but does not pass any
of the conventional integrability tests [34, 35]. A kind of solitary wave solution was further
given by Hong and Oh recently [36]. Here, similar to example 1, our proposed method gives
a series of exact solutions as follows:
a line solitary wave solution

u1 = a0 + 2c2sech2(
√

c2ξ) c2 > 0

a Jacobi doubly periodic solution

u2 = a0 +
2m2c2

2m2 − 1
cn2

(√
c2

2m2 − 1
ξ

)
c2 > 0
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and a Weierstrass periodic solution

u3 = a0 + a1℘

(√−a1

2
ξ, g2, g3

)
with c2 = 0

where ξ = x + cy + 2c
3 (e + 3a0 + 2c2) + et and g2 = 2c1/a1, g3 = 2c0/a1. As m → 1, the

Jacobi periodic solution u2 degenerates to the line solitary wave solution u1.

Example 3. Consider the symmetric regularized long wave equation

utt + uxx + uuxt + uxut + uxxtt = 0

which arises in several physical applications including ion sound waves in a plasma [37].
The Painlevé test predicts that the symmetric regularized long wave equation is not solvable
by inverse scattering [38]. In a similar way to examples 1 and 2, we obtain three kinds of
solutions, namely, a solitary wave solution

u1 = −1

c
(1 + c2 + 4c2c2) + 12cc2sech2(

√
c2ξ1) c2 > 0

a Jacobi doubly periodic solution

u2 = −1

c
(1 + c2 + 4c2c2) +

12cc2m
2

c4(2m2 − 1)
cn2

(√
c2

2m2 − 1
ξ1

)
and a Weierstrass doubly periodic solution

u3 = −1

c
(1 + c2 + 4c2c2) + a1℘

(√−a1

12c
ξ3, g2, g3

)

where

ξ = x + ct g2 = 12cc1

a1
g3 = 12cc0

a1
.

As m → 1, the Jacobi periodic solution u2 degenerates to the line solitary wave solution u1.

3.2. Systems of nonlinear evolution equations

In general, the system of nonlinear equations is more difficult to solve than a single equation,
especially by using direct integration methods. Our proposed method works equally well for
such systems without much extra effort compared with single equations.

Example 4. Consider the coupled Drinfel’d–Sokolov–Wilson equation

ut + 3vvx = 0

vt + 2vxxx + 2uvx + uxv = 0
(3.8)

which was introduced as a model of water waves [39, 40]. Solitary wave solution and solitary
wave structure of this system were investigated [22, 41]. Here our proposed method gives a
series of travelling wave solutions to the system as follows.

Using transformation u = U(ξ), v = V (ξ), ξ = x + ct , we reduce equation (3.8) to the
following system:

cU ′ + 3V V ′ = 0

cV ′ + 2V ′′′ + 2UV ′ + U ′V = 0.
(3.9)
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We expand the solutions of equation (3.9) as

H =
n1∑
i=0

aiϕ
i(ξ) U =

n2∑
j=0

bjϕ
j (ξ)

where ϕ satisfies (2.5). Balancing the highest derivative terms with nonlinear terms in (3.9)
gives

n1 = 2n2 r = n2 + 2.

Therefore, we may choose n1 = 2, n2 = 1, r = 4 and have

U = a0 + a1ϕ + a2ϕ
2 U = b0 + b1ϕ (3.10)

where ϕ satisfies (2.9).
Substituting (3.10) into (3.9) and using Mathematica, we obtain a system of algebraic

equations:

εca1 + 3εb0b1 = 0
2εca2 + 3εb2

1 = 0
εa1b0 + εcb1 + 2εa0b1 + 2ε3b1c2 = 0
2εa2b0 + 3εa1b1 + 6ε3b1c3 = 0
4εa2b1 + 12ε3b1c4 = 0.

Note that ε = ±1 and hence ε3 = ε. We may eliminate ε from the above system. Solving the
system, we obtain two kinds of solutions, namely,

c1 = c3 = a1 = b0 = 0 a0 = −1

2
(c + 2c2) a2 = −3b1

2c
c4 = b2

1

2c
(3.11)

with b1, c0, c2 and c being arbitrary constants, and

c0 = c1 = 0 a0 = − 1

2c
(c2 + 2cc2 − 3b2

0) a1 = −3b0b1

c

a2 = −3b2
1

2c
c3 = 2b0b1

c
c4 = b2

1

2c

(3.12)

where b0, b1, c2 and c are arbitrary constants.
From (2.22), (2.24) and (3.11), we obtain two kinds of solitary wave solutions, namely,

u1 = − 1
2 (c + 2c2) + 3c2sech2(

√
c2ξ)

v1 = √−cc2sech(
√

c2ξ) c2 > 0
(3.13)

and

u2 = −1

2
(c + 2c2) +

3

2
c2tanh2

(√
−c2

2
ξ

)

v2 = ±√−cc2tanh

(√
−c2

2
ξ

)
c2 < 0

(3.14)

where ξ = x + ct .
Again from (2.28)–(2.30) and (3.11), we also obtain three Jacobi doubly periodic solutions,

namely,

u3 = −1

2
(c + 2c2) +

3c2m
2

2m2 − 1
cn2

(√
c2

2m2 − 1
ξ

)

v3 =
√

−cc2m2

2m2 − 1
cn

(√
c2

2m2 − 1
ξ

)
c2 < 0

(3.15)
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u4 = −1

2
(c + 2c2) +

3c2

2 − m2
dn2

(√
c2

2 − m2
ξ

)

v4 =
√ −cc2

2 − m2
dn

(√
c2

2 − m2
ξ

)
c2 < 0

(3.16)

and

u5 = −1

2
(c + 2c2) +

3c2m
2

m2 + 1
sn2

(√
− c2

m2 + 1
ξ

)

v5 = ±
√

−2cc2m2

m2 + 1
sn

(√
− c2

m2 + 1
ξ

)
c2 < 0

(3.17)

where ξ = x+ct . As m → 1, the Jacobi doubly periodic solutions (3.15) and (3.16) degenerate
to the solitary wave solutions (3.13), and (3.17) degenerates to (3.14).

Setting c2 = 0 in (3.12) and using (2.13), we then obtain an exponential solution

u6 = − 1

2c

(
c2 − 3b2

0

) − 6b2
0

c
ϕ − 3b0b1

c
ϕ2

v6 = b0 + 2b0ϕ ϕ = exp

(
±b0

√
−2

c
ξ

)
c < 0.

(3.18)

From (2.25) and (3.12), we obtain a solitary wave solution

u7 = − 1

2c

(
c2 + 2cc2 − 3b2

0

) − 3b0b1

c
ϕ − 3b2

1

2c
ϕ2

v7 = b0 + b1ϕ ϕ = 2cc2sech2
(

1
2

√
c2ξ

)
±b1

√
2cc2 tanh ξ − 2b0b1

(3.19)

where ξ = x + ct . Here we remark that the solution (3.14) can be obtained by the tanh
method and the extended method [16, 20], and (3.13) and (3.14) were obtained by the mixed
exponential method [22]. The other five solutions (3.15)–(3.19) are new and cannot be obtained
by these methods.

Example 5. Consider the (2 + 1)-dimensional generalized dispersive long wave equation

uty + (vx + uuy)x = 0

vt + (uv + u + uxy)x = 0
(3.20)

which was introduced by Ablowitz and Clarkson [1]. In the (1 + 1)-dimensional reduce x = y,
the system (3.20) becomes the dispersive long wave equation, which is known to be completely
integrable [42, 43]. The proposed method gives a series of new travelling wave solutions for
the system.

In a way similar to example 5, we obtain two solitary wave solutions

u1 = −c ±
√

−2c2tanh

(√
−c2

2
ξ

)

v1 = −(1 + cc2) + cc2tanh2

(√
−c2

2
ξ

)
c2 < 0
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and

u2 = −b1 + a1cd

ca1
+ a1ϕ

v2 = b2
1 − ca2

1 − c2a2
1c2

ca2
1

+ b1ϕ − 1

2
ca2

1ϕ
2 c2 > 0

where

ϕ = c2sech2
(

1
2

√
c2ξ

)
±a1

√
c2 tanh

(
1
2

√
c2ξ

)
+ b1

ξ = x + cy + dt.

A Jacobi doubly periodic solution reads

u3 = −c ± 2

√
− c2m2

m2 + 1
sn

(√
− c2

m2 + 1
ξ

)

v3 = −c2 +
2c2m

2

m2 + 1
sn2

(√
− c2

m2 + 1
ξ

)
c2 < 0

where ξ = x + cy + dt . As m → 1, the Jacobi periodic solutions (u3, v3) degenerate to the
solitary wave solution (u1, v1). We remark that the solitary wave solution can be obtained by
the tanh method and mixed exponential method.

3.3. Special-type equations

It is well known that physics and engineering often provide special types of nonlinear equations
such as the sine-Gordon equation, sinh-Gordon equation and Schrödinger equation. In the
following, our proposed method is extended to such equations whose solutions require some
kinds of ‘prepossessing’ techniques.

Example 6. We consider the double sine-Gordon equation

uxt = sin u + sin(2u) (3.21)

which is a frequent object of study in numerous physical applications, such as Josephson
arrays, ferromagnetic materials, charge density waves and smectic liquid crystal dynamics
[44–48]. Though the sine-Gordon equation

uxt = sin u

which is completely integrable, the Painlevé test and numerical evidence predict that doubly
sine-Gordon equation (3.21) is not thought to be completely integrable [1]. The known
travelling wave solution to equation (3.21) is

u = 2 arctan

[√
3 tanh

(
cx − 3

8c
t

)]
(3.22)

and it is the aim of our proposed method to find a more general solution, including (3.22).

To extend our proposed method to equation (3.21), we consider the transformations

u = 2 arctan v v = V (ξ) ξ = x + ct

and hence have

uxt = 2c(V 2V ′′ + V ′′ − 2V V ′2)
(1 + V 2)2

sin u = 2V

1 + V 2
sin(2u) = 4V (1 − V 2)

(1 + V 2)2
.

(3.23)
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Substituting (3.23) into (3.21), equation (3.21) is reduced to a polynomial-type equation

c(1 + V 2)V ′′ − 2cV V ′2 − 3V + V 3 = 0. (3.24)

We expand the solution of equation (3.24) in the form

U =
n∑

i=0

aiϕ
i(x, t) =

n∑
i=0

aiϕ
i(ξ)

where ϕ satisfies equation (2.5). Balancing the term V 2V ′′ with the term V V ′2 in (3.24) gives

n + 2n − 2 + r = 2n + n − 2 + r

from which we see that n and r are arbitrary. We take r = 4 and n = 1 and have

U = a0 + a1ϕ (3.25)

where ϕ satisfies (2.9).
Substituting (3.25) into (3.24) and using Mathematica yields a system of algebraic

equations:

−3a1 + 3a2
0a1 − 2ε2ca3

1c0 − ε2ca0a
2
1c1 + ε2ca1c2 + ε2ca2

0a1c2 = 0
a3

1 − ε2ca2
1c2 + ε2ca0a

2
1c3 + 2ε2ca1c4 + 2ε2ca2

0a1c4 = 0
−6a0 + 2a3

0 − 4ε2ca0a
2
1c0 + ε2ca1c1 + ε2ca2

0a1c1 = 0
2a0a

2
1 − ε2ca3

1c1 + ε2ca1c3 + ε2ca2
0a1c3 = 0

−ε2ca3
1c3 + 4ε2ca0a

2
1c4 = 0.

After eliminating ε, we solve the above system and obtain three kinds of solutions, namely,

c3 = c1 = a0 = 0 c = − 3

2a2
1c0 − c2

c4 = 1

3
a2

1

(
a2

1c0 + c2
)

(3.26)

with a1, c0 and c2 being arbitrary constants,

c0 = c3 = c4 = 0 a0 = a2
0 − 1

a2
1c

c1 = 2a0

a1c
c2 = 1

c
(3.27)

with a1 and c being arbitrary constants and

c0 = c1 = 0 a0 = ±
√

3 c2 = − 3

2c
c3 = ∓

√
3a1

2c
c4 = −a2

1

8c
(3.28)

where a1 and c are arbitrary constants.
Taking c0 = c2

2

/
4c4 in (3.26) gives

c = 3

4c2
c4 = −1

6
a2

1c2.

In this case, by using (2.20) and (2.30), we obtain a solitary wave solution

u1 = 2 arctan

{
±

√
3 tanh(

√
−c2

2
(x +

3

4c2
t)

}
c2 < 0

and a Jacobi doubly periodic solution

u2 = 2 arctan

{
±

√
6m2

m2 + 1
sn(

√
− c2

m2 + 1
(x +

3

4c2
t)

}
c2 < 0.

From (2.14), (2.20) and (3.27), we obtain a triangular periodic solution

u3 = 2 arctan{± sin[
√

−1/c(x + ct)]} c < 0
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and a hyperbolic solution

u4 = 2 arctan{± sinh[2
√

1/c(x + ct)]} c > 0.

From (2.25) and (3.28), we find that the corresponding solution is the same as the solution
u1 since c2

3 = 4c2c4. We remark that the solutions u3 and u4 cannot be obtained by the tanh
method and the Jacobi function expansion method.

Example 7. Consider the Calogero–Degasperis–Fokas equation [32, 49]

ut = uxxx − 1
8u3

x + (αeu + βe−u + γ )ux (3.29)

which is completely integrable and solvable by the inverse scattering [1].

We make transformation u = ln v, v = V (ξ) = V (x + ct), then equation (3.29) becomes

−8αV 3V ′ − 17V ′3 − 8βV V ′ + 24V V ′V ′′ − 8(γ − c)V 2V ′ − 8V 2V ′′′ = 0. (3.30)

Substituting the expansion

V = a0 + a1ϕ + a2ϕ
2

into equation (3.30), we may obtain a system of algebraic equations, from whose solutions
and using (2.10)–(2.31), we obtain a solitary wave solution

u1 = ln

{√
β

α
tanh2

(
4αβ

25

)1/4 [
x +

(
γ +

2

5

√
αβ

)
t

]}

a Jacobi doubly periodic wave solution

u2 = ln




√
2βm2

α(m2 + 1)
sn2

(
8αβ

25(m2 + 1)

)1/4 [
x +

(
γ +

2

5

√
αβ

)
t

]


an exponential solution

u3 = ln

{
a1 exp

(
±

√
8β

5a0

[
x +

(
γ +

β

5a0

)
t

])}
α = 0

and Weierstrass doubly periodic solution

u4 = ln

{
a0 + a1℘

(√
−2αa1

5

[
x +

(
γ +

3

5
αa0

)
t

]
, g2, g3

)}

where

g2 = −4a0
(
β − 2αa2

0

)
αa3

1

g3 = −4
(
β − 3αa2

0

)
αa2

1

.

Example 8. The Schrödinger–Boussinesq system

iut = uxx + uv

−vtt + vxx + (v2)xx − vxxxx = (|u|2)xx

(3.31)

is known to describe various physical processes in lasers and plasmas, such as formation,
Langmuir field amplitude and intense electromagnetic waves and modulational instabilities
[50–53]. The problem of the complete integrability of system (3.31) has been studied by
Chowdhury et al from the view of Painlevé analysis [54]. The solitary wave solutions for
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system (3.31) were obtained in [54, 55]. Here our proposed method gives a series of travelling
wave solutions as follows.

By considering transformations u = eiθU(ξ), v = V (ξ), θ = px + qt, ξ = x + ct ,
from system (3.31) we obtain the relation c = 2p and coupled nonlinear ordinary differential
equations

(q − p2)U + UV + U ′′ = 0

(1 − 4p2)V ′′ + (V 2)′′ − (U 2)′′ − V ′′′′ = 0.

In a way similar to examples 6 and 7, we find that equation (3.31) admits a solitary wave
solution

u1 = ±2
√

2c2eiθ1[2 − 3sech2(
√

c2ξ1)]

v1 = −4c2 + 6c2sech2(
√

c2ξ1) c2 > 0
(3.32)

a Jacobi doubly periodic solution

u2 = ∓2
√

2c2 eiθ1

[
2 − 3m2

2m2 − 1
cn2

(√
c2

2m2 − 1
ξ1

)]

v2 = −4c2 +
6c2m

2

2m2 − 1
cn2

(√
c2

2m2 − 1
ξ1

)
c2 > 0

(3.33)

and a Weierstrass periodic solution

u3 = ±√
2 eiθ2 [b0 + b1℘(

√−b1/6ξ2, g2, g3)]

v3 = b0 + b1c℘ (
√−b1/6ξ2, g2, g3) c2 = 0 b1 > 0

where

ξ1 = x ±
√

1 + 4c2t θ1 = ±
√

1 + 4c2x + 1
4 (1 + 20c2)t

ξ2 = x ±
√

1 − 2b0t θ2 = ±
√

1 − 2b0x + 1
4 (1 − 10b0)t

g2 = 12b2
0

b2
1

g3 = −6c0

b1
.

As m → 1, the Jacobi periodic solution (3.33) degenerates to the solitary wave solution (3.32).

4. Further discussion

Apart from the equations considered in this paper, the proposed method is also readily
applicable to a large variety of other nonlinear equations including classical KdV, MdV,
KdV–MKdV, Jaulent–Miodek, BBM, modified BBM, Benjamin Ono, Kawachra, Schrödinger,
Klein–Gordon, sine-Gordon, sinh-Gordon, (2 + 1)-dimensional KP, (2+ 1)-dimensional Kaup–
Kupershmidt, (2 + 1)-dimensional Gardner, coupled KdV, coupled Schrödinger-KdV and
coupled Ito equations etc. According to the method, the travelling wave solutions of a given
nonlinear equation depend on the explicit solvability of (2.5) with its coefficients c, ai, cj

satisfying a system of algebraic equations. In the present paper, we have only investigated a
special case when r = 4. The proposed method can be extended to the case when r > 4. In
addition, we only consider travelling wave solutions involving a single quantity x + ct . We
hope to further extend our proposed method to find multi-wave solutions. The details for these
cases also will be investigated in our future works.
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